Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Physiol ; 108(7): 986-997, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37084168

RESUMO

NEW FINDINGS: What is the central question of this study? DAPK3 contributes to the Ca2+ -sensitization of vascular smooth muscle contraction: does this protein kinase participate in the myogenic response of cerebral arteries? What is the main finding and its importance? Small molecule inhibitors of DAPK3 effectively block the myogenic responses of cerebral arteries. HS38-dependent changes to vessel constriction occur independent of LC20 phosphorylation, and therefore DAPK3 appears to operate via the actin cytoskeleton. A role for DAPK3 in the myogenic response was not previously reported, and the results support a potential new therapeutic target in the cerebrovascular system. ABSTRACT: The vascular smooth muscle (VSM) of resistance blood vessels is a target of intrinsic autoregulatory responses to increased intraluminal pressure, the myogenic response. In the brain, the myogenic reactivity of cerebral arteries is critical to homeostatic blood flow regulation. Here we provide the first evidence to link the death-associated protein kinase 3 (DAPK3) to the myogenic response of rat and human cerebral arteries. DAPK3 is a Ser/Thr kinase involved in Ca2+ -sensitization mechanisms of smooth muscle contraction. Ex vivo administration of a specific DAPK3 inhibitor (i.e., HS38) could attenuate vessel constrictions invoked by serotonin as well as intraluminal pressure elevation. The HS38-dependent dilatation was not associated with any change in myosin light chain (LC20) phosphorylation. The results suggest that DAPK3 does not regulate Ca2+ sensitization pathways during the myogenic response of cerebral vessels but rather operates to control the actin cytoskeleton. A slow return of myogenic tone was observed during the sustained ex vivo exposure of cerebral arteries to HS38. Recovery of tone was associated with greater LC20 phosphorylation that suggests intrinsic signalling compensation in response to attenuation of DAPK3 activity. Additional experiments with VSM cells revealed HS38- and siDAPK-dependent effects on the actin cytoskeleton and focal adhesion kinase phosphorylation status. The translational importance of DAPK3 to the human cerebral vasculature was noted, with robust expression of the protein kinase and significant HS38-dependent attenuation of myogenic reactivity found for human pial vessels.


Assuntos
Artérias Cerebrais , Vasoconstrição , Animais , Humanos , Ratos , Artérias Cerebrais/metabolismo , Proteínas Quinases Associadas com Morte Celular/metabolismo , Proteínas Quinases , Resistência Vascular , Vasoconstrição/fisiologia
2.
Can J Physiol Pharmacol ; 101(1): 27-40, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36342379

RESUMO

Smoothelin-like 1 (SMTNL1) modulates the contractile performance of smooth muscle and thus has a key role in vascular homeostasis. Elevated vascular tone, recognized as a contributor to the development of progressive cardiac dysfunction, was previously found with SMTNL1 deletion. In this study, we assessed cardiac morphology and function of male and female, wild-type (Smtnl1+/+) and global SMTNL1 knockout (Smtnl1-/-) mice at 10 weeks of age. Gross dissection revealed distinct cardiac morphology only in males; Smtnl1-/- hearts were significantly smaller than Smtnl1+/+, but the left ventricle (LV) proportion of heart mass was greater. Male Smtnl1-/- mice also displayed increased ejection fraction and fractional shortening, as well as elevated aortic and pulmonary flow velocities. The impact of cardiac stress with pressure overload by transverse aortic constriction (TAC) was examined in male mice. With TAC banding, systolic function was preserved, but the LV filling pressure was selectively elevated due to relaxation impairment. Smtnl1-/- mice displayed higher early/passive filling velocity of LV/early mitral annulus velocity ratio (E/E' ratio) and myocardial performance index along with a prolonged isovolumetric relaxation time. Taken together, the findings support a novel, sex-dimorphic role for SMTNL1 in modulating cardiac structure and function of mice.


Assuntos
Proteínas Musculares , Músculo Liso , Fatores Sexuais , Função Ventricular Esquerda , Animais , Feminino , Masculino , Camundongos , Camundongos Knockout , Contração Muscular , Volume Sistólico , Proteínas Musculares/genética , Fosfoproteínas/genética
3.
Sci Rep ; 9(1): 481, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30679490

RESUMO

The role of the smoothelin-like 1 (SMTNL1) protein in mediating vascular smooth muscle contractile responses to intraluminal pressure was examined in resistance vessels. Mesenteric arterioles from wild type (WT) and SMTNL1 global knock-out (KO) mice were examined with pressure myography. SMTNL1 deletion was associated with enhanced myogenic tone in vessels isolated from male, but not female, mice. Intraluminal pressures greater than 40 mmHg generated statistically significant differences in myogenic reactivity between WT and KO vessels. No overt morphological differences were recorded for vessels dissected from KO animals, but SMTNL1 deletion was associated with loss of myosin phosphatase-targeting protein MYPT1 and increase in the myosin phosphatase inhibitor protein CPI-17. Additionally, we observed altered contractile responses of isolated arteries from SMTNL1 KO mice to phenylephrine, KCl-dependent membrane depolarization and phorbol 12,13-dibutyrate (PDBu). Using pharmacological approaches, myogenic responses of both WT and KO vessels were equally affected by Rho-associated kinase (ROCK) inhibition; however, augmented protein kinase C (PKC) signaling was found to contribute to the increased myogenic reactivity of SMTNL1 KO vessels across the 60-120 mmHg pressure range. Based on these findings, we conclude that deletion of SMTNL1 contributes to enhancement of pressure-induced contractility of mesenteric resistance vessels by influencing the activity of myosin phosphatase.


Assuntos
Deleção de Genes , Artérias Mesentéricas/metabolismo , Desenvolvimento Muscular/genética , Proteínas Musculares/genética , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Proteína Quinase C/metabolismo , Transdução de Sinais , Animais , Pressão Sanguínea/genética , Camundongos , Camundongos Knockout , Proteínas Musculares/metabolismo , Vasoconstrição/genética
4.
J Cell Biochem ; 116(11): 2667-75, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25923522

RESUMO

The smoothelin-like 1 (SMTNL1) protein is the newest member of the smoothelin family of muscle proteins. Two calmodulin (CaM)-binding domains (CBD1 for Ca-CaM; CBD2 for apo-CaM) have been described for the SMTNL1 protein using in vitro assays. We now demonstrate in situ associations of SMTNL1 and CaM in A7r5 smooth muscle cells using the proximity ligation assay (PLA). We quantified CaM-SMTNL1 proximity events accurately after taking into account variations in protein expression levels. The refined method allows quantification of in situ proximity after transient transfection with an associated error of <10%. The proximity of SMTNL1 and CaM in A7r5 cells could be reduced by scrambling the amino acid sequence and mutation of large hydrophobic amino acids of CBD1. The truncation of CBD2 did not influence SMTNL1 proximity to CaM. Ultimately, we conclude that SMTNL1 forms complex interactions with CaM in smooth muscle cells, with a role for CBD1 and possibly the intrinsically disordered region.


Assuntos
Calmodulina/metabolismo , Proteínas Musculares/química , Proteínas Musculares/metabolismo , Animais , Sítios de Ligação , Células Cultivadas , Proteínas Musculares/genética , Mutação , Miócitos de Músculo Liso , Ratos
5.
Microcirculation ; 21(3): 249-58, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24267201

RESUMO

Vascular smooth muscle contraction and the myogenic response regulate blood flow in the resistance vascular and contribute to systemic blood pressure. Three pathways are currently known to contribute to the development of the myogenic response: (i) Ca(2+) -dependent phosphorylation of LC20; (ii) Ca(2+) sensitization through inhibition of myosin phosphatase; and (iii) cortical actin polymerization. A number of regulatory smooth muscle proteins are integrated with these pathways to fine tune the response and facilitate adaptations to vascular (patho)physiologies. Of particular interest is the SMTN family of proteins, consisting of SMTN-A, SMTN-B, and the SMTN-like protein, SMTNL1. The SMTN-B and SMTNL1 proteins are both implicated in regulating smooth muscle contractility and contributing to vascular adaptations associated with hypertension, pregnancy, and exercise training. In the case of SMTNL1, the protein plays multiple roles in regulating contraction through functional interactions with contractile regulators as well as transcriptional control of the contractile phenotype and Ca(2+) -sensitizing capacity. For the first time, preliminary results suggest SMTNL1 is involved in the myogenic response of the cerebral resistance vasculature. In this regard, global SMTNL1 deletion is associated with greater myogenic reactivity of cerebral arterioles, although the precise mechanism accounting for this finding remains to be defined.


Assuntos
Contração Muscular/fisiologia , Proteínas Musculares/fisiologia , Músculo Liso Vascular/fisiologia , Fosfoproteínas/fisiologia , Citoesqueleto de Actina/metabolismo , Animais , Arteríolas/fisiologia , Encéfalo/irrigação sanguínea , Sinalização do Cálcio , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Desenvolvimento Muscular/fisiologia , Proteínas Musculares/deficiência , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Fosfoproteínas/deficiência , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Polimerização , Gravidez , Vasoconstrição/fisiologia
6.
World J Gastrointest Pathophysiol ; 2(2): 19-25, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21607162

RESUMO

The number of patients suffering from symptoms associated with gastrointestinal (GI) motility disorders is on the rise. GI motility disorders are accompanied by alteration of gastrointestinal smooth muscle functions. Currently available drugs, which can directly affect gastrointestinal smooth muscle and restore altered smooth muscle contractility to normal, are not satisfactory for treating patients with GI motility disorders. We have recently shown that ERK1/2 and p38MAPK signaling pathways play an important role in the contractile response not only of normal intestinal smooth muscle but also of inflamed intestinal smooth muscle. Here we discuss the possibility that ERK1/2 and p38MAPK signaling pathways represent ideal targets for generation of novel therapeutics for patients with GI motility disorders.

7.
BMC Mol Biol ; 12: 10, 2011 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-21352594

RESUMO

BACKGROUND: Smoothelin-like 1 (SMTNL1, also known as CHASM) plays a role in promoting relaxation as well as adaptive responses to exercise, pregnancy and sexual development in smooth and skeletal muscle. Investigations of Smtnl1 transcriptional regulation are still lacking. Thus, in this study, we identify and characterize key regulatory elements of the mouse Smtnl1 gene. RESULTS: We mapped the key regulatory elements of the Smtnl1 promoter region: the transcriptional start site (TSS) lays -44 bp from the translational start codon and a TATA-box motif at -75 bp was conserved amongst all mammalian Smtnl1 promoters investigated. The Smtnl1 proximal promoter enhances expression up to 8-fold in smooth muscle cells and a second activating region lays 500 bp further upstream. Two repressing motifs were present (-118 to -218 bp and -1637 to -1869 bp). The proximal promoter is highly conserved in mammals and contains a mirror repeat sequence. In silico analysis suggests many transcription factors (notably MyoD) could potentially bind within the Smtnl1 proximal promoter sequence. CONCLUSION: Smtnl1 transcript was identified in all smooth muscle tissues examined to date, albeit at much lower levels than found in skeletal muscle. It is unlikely that multiple SMTNL1 isoforms exist since a single Smtnl1 transcription start site was identified in both skeletal and intestinal smooth muscle. Promoter studies suggest restrictive control of Smtnl1 expression in non-muscle cells.


Assuntos
Proteínas Musculares/genética , Músculo Liso/metabolismo , Fosfoproteínas/genética , Regiões Promotoras Genéticas , Animais , Camundongos , Proteínas Musculares/metabolismo , Fosfoproteínas/metabolismo , Reação em Cadeia da Polimerase , Fatores de Transcrição/metabolismo , Sítio de Iniciação de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...